A Guide to Perioperative Pacemaker and AICD Management

Monty Lunsford MD
UT Southwestern
12/16/10
Pacemaker Basics

• Provides electrical stimuli to cause cardiac contraction when intrinsic cardiac activity is inappropriately slow or absent
• Sense intrinsic cardiac electric potentials
ICD Basics

• Designed to treat a cardiac tachydysrhythmia
• Performs cardioversion/defibrillation
 – Ventricular rate exceeds programmed cut-off rate
• ATP (antitachycardia pacing)
 – Overdrive pacing in an attempt to terminate ventricular tachycardias
• Some have pacemaker function (combo devices)
Pacemaker and ICD Basics

- Pulse generators
 - Placed subcutaneously or submuscularly
 - Connected to leads
- Battery
 - Most commonly lithium-iodide type
 - Life span 5-8 years
 - Output voltage decreases gradually
 - Makes sudden battery failure unlikely
Pacemaker and ICD Basics

• Synchronous
 – Demand mode
 – Sensing circuit searches for intrinsic depolarization potential
 – If absent, a pacing response is generated
 – Can mimic intrinsic electrical activity pattern of the heart
Pacemaker Nomenclature

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Paced</td>
<td>Chamber Sensed</td>
<td>Response to Sensing</td>
<td>Rate Modulation, Programmability</td>
<td>Anti-tachycardia Features</td>
</tr>
<tr>
<td>A=Atrium</td>
<td>A=Atrium</td>
<td>T=Triggered</td>
<td>P=Simple</td>
<td>P=Pacing</td>
</tr>
<tr>
<td>V=Ventricle</td>
<td>V=Ventricle</td>
<td>I=Inhibited</td>
<td>M=Multi-programmable</td>
<td>S=Shock</td>
</tr>
<tr>
<td>D=Dual</td>
<td>D=Dual</td>
<td>D=Dual</td>
<td>R=Rate Adaptive</td>
<td>D=Dual</td>
</tr>
<tr>
<td>O=None</td>
<td>O=None</td>
<td>O=None</td>
<td>C=Communicating</td>
<td>O=None</td>
</tr>
</tbody>
</table>
Pacemaker Nomenclature

- 1st letter – chamber paced
- 2nd letter – chamber sensed
- 3rd letter – response to chamber sensed
EMI is not our Friend

- Can interfere with function of pacemaker or ICD
- Device misinterprets the EMI causing
 - Rate alteration
 - Sensing abnormalities
 - Asynchronous pacing
 - Noise reversion
 - Reprogramming
Electromagnetic Interference

- Examples
 - Metal detectors
 - Cell phones
 - High voltage power lines
 - Some home appliances (microwave)
Electromagnetic Interference

- Intensity of electromagnetic field decreases inversely with the square of the distance from the source.
- Newer pacemakers and ICDs are being built with increased internal shielding.
Electromagnetic Interference

Monopolar Cautery

Bipolar Cautery
Pacemaker Sensing Abnormalities

• Oversensing
 – Senses noncardiac electrical activity and is inhibited from correctly pacing
 – Etiology
 • Muscular activity (diaphragm or pecs), EMI, cell phone held within 10cm of pulse generator

• Undersensing
 – Incorrectly misses intrinsic depolarization and paces
 – Etiology
 • Poor lead positioning, lead dislodgement, magnet application, low battery states, MI
ICD Inappropriate Cardioversion

- Most frequent complication
- Provokes pain and anxiety in patients
- Consider when
 - Patient is in Afib
 - With ventricular response > programmed cut off
 - Received multiple shocks in rapid succession
- Etiology – Afib, T-wave oversensing, lead fracture, insulation breakage, MRI, EMI
ICD Inappropriate Cardioversion

- **Treatment**
 - Magnet over ICD inhibits further shocks
 - Does NOT inhibit bradycardic pacing

- **Note**
 - Some older devices produce beep with each QRS
 - If left on for >30 seconds, ICD disabled and continuous beep
 - To reactivate, lift off magnet and then replace for >30 seconds, beep will return with each QRS
Asynchronous Mode

- Asynchronous
 - Fixed rate
 - Impulse produced at a set rate
 - No relation to patients intrinsic cardiac activity
 - Susceptible to Torsades if impulse coincides with t wave (R on T phenomenon)
Magnet Inhibition

• Closes an internal reed switch
 – Causes sensing to be inhibited
 – Temporarily turns pacemaker into “asynchronous” mode (set rate)
• Does NOT turn pacemaker off
• Rate can confer info regarding battery life
 – Distinct rates for BOL, ERI, EOL
Asynchronous Mode Enabled

Magnet Reprogrammed
My Patient has a CRMD of Some Kind. Where do I Start?

- Identify the device
- Is it an AICD or a pacemaker?
- What is the brand and model?
 - Patient history
 - Device information carried by the patient on an ID card
 - Chest x-ray will reveal the device maker on the circuit board (in up to 60% of devices)
My Patient has a CRMD of Some Kind. Where do I Start?

- Call the manufacturer of the device
- They are open 24/7 and want to help you
 - Medtronic www.medtronic.com
 - 800-505-4636
 - Guidant www.bostonscientific.com
 - 800-328-9634
 - St. Jude www.stjudemedical.com
 - 651-582-4000
My Patient has a CRMD of Some Kind. Where do I Start?

- Manufacturer will be able to tell you important details
 - AICD or pacemaker
 - Current settings
 - Response to external magnet placement
 - Expected remaining battery life
 - Last date of interrogation
 - If there is a question with the device they will send a representative
Additional Questions

• Find out why device was placed – have a healthy respect for a patient with no underlying rhythm (pacemaker dependent)
• Ideally, get the device interrogated prior to the procedure
Standard of Care According to Rozner

- Interrogate all devices prior to elective procedures.
- Re-program all devices for any elective procedure requiring monopolar cautery.
- Beta-block patients who have been re-programmed to asynchronous mode to prevent myocardial competition.
- Make sure EKG monitor will show (and not filter) pacer spikes.
- Have device tested in PACU to ensure settings are back to normal and no EMI-related damage took place.
Consider reprogramming any device in a patient who:

- Must have monopolar electrocautery
- Has a minute ventilation sensor
- Is chronotropically incompetent with anticipated need for higher cardiac output (Whipple, blood loss, etc.)
- Test device after procedure if monopolar cautery is used
If Monopolar Cautery Must be Used

• Place the grounding pad far away from the pacing circuit
• Keep the flow of the bovie current perpendicular to the pacing circuit
• Ask surgeon to
 – Limit the current setting
 – Use bovie judiciously
 – Use only short bursts that are well spaced in time
What about R2 Pads?

- Consider placing pads on any AICD that is disabled either by magnet or by programming.
- Position pads anterior to posterior and try not to position ICD generator between the line of the pads.
Impact on ALS Protocols

• Not many
 – Can defibrillate
 – Sternal paddles should be placed a safe distance (10 cm) from pulse generator
 – In case of MI
 • May require temporary transcutaneous pacing
References

